Conic Sections Question 363

Question: The equation of the ellipse whose one focus is at (4, 0) and whose eccentricity is 4/5, is

[Karnataka CET 1993]

Options:

A) $ \frac{x^{2}}{3^{2}}+\frac{y^{2}}{5^{2}}=1 $

B) $ \frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1 $

C) $ \frac{x^{2}}{5^{2}}+\frac{y^{2}}{4^{2}}=1 $

D) $ \frac{x^{2}}{4^{2}}+\frac{y^{2}}{5^{2}}=1 $

Show Answer

Answer:

Correct Answer: B

Solution:

Here $ ae=4 $ and $ e=\frac{4}{5}\Rightarrow a=5 $

Now $ b^{2}=a^{2}(1-e^{2})\Rightarrow b^{2}=25( 1-\frac{16}{25} )=9 $

Hence equation of the ellipse is $ \frac{x^{2}}{25}+\frac{y^{2}}{9}=1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें