Conic Sections Question 368

Question: The locus of the middle point of the intercept of the tangents drawn from an external point to the ellipse $ x^{2}+2y^{2}=2 $ between the co-ordinates axes, is

[IIT Screening 2004]

Options:

A) $ \frac{1}{x^{2}}+\frac{1}{2y^{2}}=1 $

B) $ \frac{1}{4x^{2}}+\frac{1}{2y^{2}}=1 $

C) $ \frac{1}{2x^{2}}+\frac{1}{4y^{2}}=1 $

D) $ \frac{1}{2x^{2}}+\frac{1}{y^{2}}=1 $

Show Answer

Answer:

Correct Answer: C

Solution:

Let the point of contact be $ R\equiv (\sqrt{2}\cos \theta ,\sin \theta ) $

Equation of tangent AB is $ \frac{x}{\sqrt{2}}\cos \theta +y\sin \theta =1 $

$ \Rightarrow $ $ A\equiv (\sqrt{2}\sec \theta ,0);B\equiv (0,\text{cosec }\theta ) $

Let the middle point Q of AB be $ (h,k) $

$ \Rightarrow $ $ h=\frac{\sec \theta }{\sqrt{2}},k=\frac{\text{cosec }\theta }{2}\Rightarrow \cos \theta =\frac{1}{h\sqrt{2}},\sin \theta =\frac{1}{2k} $

$ \Rightarrow $ $ \frac{1}{2h^{2}}+\frac{1}{4k^{2}}=1 $ , \Required locus is $ \frac{1}{2x^{2}}+\frac{1}{4y^{2}}=1 $ .

Trick : The locus of mid-points of the portion of tangents to the ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ intercepted between axes is $ a^{2}y^{2}+b^{2}x^{2}=4x^{2}y^{2} $

i.e., $ \frac{a^{2}}{4x^{2}}+\frac{b^{2}}{4y^{2}}=1 $ or $ \frac{1}{2x^{2}}+\frac{1}{4y^{2}}=1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें