Conic Sections Question 371

Question: If $ P\equiv (x,\ y) $ , $ F_1\equiv (3,\ 0) $ , $ F_2\equiv (-3,\ 0) $ and $ 16x^{2}+25y^{2}=400 $ , then $ PF_1+PF_2 $ equals

[IIT 1998]

Options:

A) 8

B) 6

C) 10

D) 12

Show Answer

Answer:

Correct Answer: C

Solution:

Equation of the curve is $ \frac{x^{2}}{5^{2}}+\frac{y^{2}}{4^{2}}=1 $

therefore $ -5\le x\le 5,-4\le y\le 4 $

$ PF_1+PF_2=\sqrt{[{{(x-3)}^{2}}+y^{2}]}+\sqrt{[{{(x+3)}^{2}}+y^{2}]} $

$ =\sqrt{{{(x-3)}^{2}}+\frac{400-16x^{2}}{25}}+\sqrt{{{(x+3)}^{2}}+\frac{400-16x^{2}}{25}} $

$ =\frac{1}{5}{ \sqrt{(9x^{2}+625-150x)}+\sqrt{(9x^{2}+625+150x)} } $

$ =\frac{1}{5}{ \sqrt{{{(3x-25)}^{2}}}+\sqrt{{{(3x+25)}^{2}}} }=\frac{1}{5}{ 25-3x+3x+25 } $

$ =10 $ , $ (\because 25-3x>0,25+3x>0 $ )