Conic Sections Question 373

Question: What is the equation of the ellipse with foci $ (\pm 2,\ 0) $ and eccentricity $ =\frac{1}{2} $

[DCE 1999]

Options:

A) $ 3x^{2}+4y^{2}=48 $

B) $ 4x^{2}+3y^{2}=48 $

C) $ 3x^{2}+4y^{2}=0 $

D) $ 4x^{2}+3y^{2}=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Since, $ ae=\pm 2 $
$ \Rightarrow a=\pm 4 $

$ (\because e=1/2) $ Now $ b^{2}=a^{2}(1-e^{2}) $
$ \Rightarrow $ $ b^{2}=16(1-1/4) $
$ \Rightarrow $ $ b^{2}=12 $

Hence ellipse is $ \frac{x^{2}}{16}+\frac{y^{2}}{12}=1 $
$ \Rightarrow $ $ 3x^{2}+4y^{2}=48 $ .