Conic Sections Question 374

Question: The number of points of intersection of the two curves $ y=2\sin x $ and $ y=5x^{2}+2x+3 $ is

[IIT 1994]

Options:

A) 0

B) 1

C) 2

D) $ \infty $

Show Answer

Answer:

Correct Answer: A

Solution:

Put $ y=2\sin x $ in $ y=5x^{2}+2x+3 $

therefore $ 2\sin x=5x^{2}+2x+3 $

therefore $ 5x^{2}+2x+3-2\sin x=0 $ ……(i) $ x=\frac{-2\pm \sqrt{4-20(3-2\sin x)}}{10} $ . It is clear that number of intersection point is zero, because $ 0\le \sin x\le 1 $ and in all the values roots becomes imaginary.