Conic Sections Question 379

Question: The distance between the directrices of the hyperbola $ x=8\sec \theta ,\y=8\tan \theta $ is

[Karnataka CET 2003]

Options:

A) $ 16\sqrt{2} $

B) $ \sqrt{2} $

C) $ 8\sqrt{2} $

D) $ 4\sqrt{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Equation of hyperbola is $ x=8\sec \theta ,y=8\tan \theta $

therefore $ \frac{x}{8}=\sec \theta ,\frac{y}{8}=\tan \theta $

$ \because {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $

therefore $ \frac{x^{2}}{8^{2}}-\frac{y^{2}}{8^{2}}=1 $ . Here, $ a=8,b=8 $ Now, $ e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1+\frac{8^{2}}{8^{2}}}=\sqrt{1+1} $

therefore $ e=\sqrt{2} $ Distance between directrices $ =\frac{2a}{e} $

$ =\frac{2\times 8}{\sqrt{2}}=8\sqrt{2}. $