Conic Sections Question 383

Question: In an ellipse $ 9x^{2}+5y^{2}=45 $ , the distance between the foci is

[Karnataka CET 2002]

Options:

A) $ 4\sqrt{5} $

B) $ \frac{49}{4}x^{2}-\frac{51}{196}y^{2}=1 $

C) 3

D) 4

Show Answer

Answer:

Correct Answer: D

Solution:

Given equation may be written as $ \frac{x^{2}}{5}+\frac{y^{2}}{9}=1. $

Comparing the given equation with standard equation, we get $ a^{2}=5 $ and $ b^{2}=9. $ We also know that in an ellipse (where $ b^{2}>a^{2}) $

$ a^{2}=b^{2}(1-e^{2})\lambda $ or $ e^{2}=\frac{b^{2}-a^{2}}{b^{2}}=\frac{9-5}{9}=\frac{4}{9} $ or $ e=\frac{2}{3}. $

Therefore distance between foci $ =2be=2\times 3\times \frac{2}{3}=4 $ .