Conic Sections Question 383

Question: In an ellipse $ 9x^{2}+5y^{2}=45 $ , the distance between the foci is

[Karnataka CET 2002]

Options:

A) $ 4\sqrt{5} $

B) $ \frac{49}{4}x^{2}-\frac{51}{196}y^{2}=1 $

3

4

Show Answer

Answer:

Correct Answer: D

Solution:

Given equation may be written as $ \frac{x^{2}}{5}+\frac{y^{2}}{9}=1. $

Comparing the given equation with standard equation, we get $ a^{2}=5 $ and $ b^{2}=9. $ We also know that in an ellipse (where $ a^{2}<b^{2}) $

$ a^{2}=b^{2}(1-e^{2})\lambda $ or $ e^{2}=\frac{b^{2}-a^{2}}{b^{2}}=\frac{9-5}{9}=\frac{4}{9} $ or $ e=\frac{2}{3}. $

Therefore distance between foci $ =2ae=2\times 3\times \frac{2}{3}=4 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें