Conic Sections Question 386

Question: The equation of ellipse whose distance between the foci is equal to 8 and distance between the directrix is 18, is

Options:

A) $ 5x^{2}-9y^{2}=180 $

B) $ 9x^{2}+5y^{2}=180 $

C) $ x^{2}+9y^{2}=180 $

D) $ 5x^{2}+9y^{2}=180 $

Show Answer

Answer:

Correct Answer: D

Solution:

$ 2ae=8,\frac{2a}{e}=18 $

therefore $ a=\sqrt{4\times 9}=6 $

$ e=\frac{2}{3}, $

$ b=6\sqrt{1-\frac{4}{9}}=\frac{6}{3}\sqrt{5}=2\sqrt{5} $

Hence the required equation is $ \frac{x^{2}}{36}+\frac{y^{2}}{20}=1 $

i.e., $ 5x^{2}+9y^{2}=180 $ .