Conic Sections Question 387

Question: In an ellipse the distance between its foci is 6 and its minor axis is 8. Then its eccentricity is

[EAMCET 1994]

Options:

A) $ \frac{4}{5} $

B) $ \frac{1}{\sqrt{52}} $

C) $ \frac{3}{5} $

D) $ 25x^{2}+144y^{2}=900 $

Show Answer

Answer:

Correct Answer: C

Solution:

Distance between foci $ =6 $

therefore $ ae=3 $ . Minor axis $ =8 $

therefore $ 2b=8 $

therefore $ b=4 $

therefore $ b^{2}=16 $

therefore $ a^{2}(1-e^{2})=16 $

therefore $ a^{2}-a^{2}e^{2}=16 $

therefore $ a^{2}-9=16 $

thereforea=5

Hence $ ae=3 $

therefore $ e=\frac{3}{5} $ .