Conic Sections Question 389

Question: Minimum area of the triangle by any tangent to the ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ with the coordinate axes is

[IIT Screening 2005]

Options:

A) $ \frac{a^{2}+b^{2}}{2} $

B) $ \frac{{{(a+b)}^{2}}}{2} $

C) ab

D) $ \frac{{{(a-b)}^{2}}}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Equation of tangent at $ (a\cos \theta ,\ b\sin \theta ) $ is $ \frac{x}{a}\cos \theta +\frac{y}{b}\sin \theta =1 $

$ P=( \frac{a}{\cos \theta },0 ) $

$ Q=( 0,\frac{b}{\sin \theta } ) $

Area of $ OPQ=\frac{1}{2}| ( \frac{a}{\cos \theta } )( \frac{b}{\sin \theta } ) |=\frac{ab}{|\sin 2\theta |} $

$ {{(Area)} _{\min }}=ab $ .