Conic Sections Question 393

Question: What will be equation of that chord of hyperbola $ 25x^{2}-16y^{2}=400 $ , whose mid point is (5, 3)

[UPSEAT 1999]

Options:

A) $ 115x-117y=17 $

B) $ 125x-48y=481 $

C) $ 127x+33y=341 $

D) $ 15x+121y=105 $

Show Answer

Answer:

Correct Answer: B

Solution:

According to question, $ S\equiv 25x^{2}-16y^{2}-400=0 $

Equation of required chord is $ S_1=T $ …..(i) Here, $ S_1=25{{(5)}^{2}}-16{{(3)}^{2}}-400 $

$ =625-144-400=81 $

and $ T\equiv 25xx_1-16yy_1-400, $ where $ x_1=5,y_1=3 $

$ =25(x)(5)-16(y)(3)-400 $

$ =125x-48y-400 $

So from (i), required chord is $ 125x-48y-400=81 $ or $ 125x-48y=481. $