Conic Sections Question 394

Question: A point ratio of whose distance from a fixed point and line $ x=9/2 $ is always 2 : 3. Then locus of the point will be

[DCE 2005]

Options:

A) Hyperbola

B) Ellipse

C) Parabola

D) Circle

Show Answer

Answer:

Correct Answer: B

Solution:

In question, $ PS=\frac{2}{3}PM $ (Given) Focus $ S(-2,0) $ , Equation of directrix $ 2x-9=0 $

$ {{(PS)}^{2}}=\frac{4}{9}{{(PM)}^{2}} $

therefore $ {{(h+2)}^{2}}+{{(k)}^{2}}=\frac{4}{9}{{( \frac{2h-9}{2} )}^{2}} $

therefore $ 9[{{(h+2)}^{2}}+{{(k)}^{2}}]=\frac{4{{(2h-9)}^{2}}}{4} $

therefore $ 9h^{2}+9k^{2}+36h+36=4h^{2}+81+36h $

therefore $ \frac{5h^{2}}{45}+\frac{9k^{2}}{45}=1 $

therefore $ \frac{h^{2}}{9}+\frac{k^{2}}{5}=1 $

therefore 1 Locus of point P(h, k) is $ \frac{x^{2}}{9}+\frac{y^{2}}{5}=1 $ , which is an ellipse.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें