Conic Sections Question 40

Question: The equation of the parabola whose vertex is at (2, -1) and focus at (2, -3) is

[Kerala (Engg.) 2002]

Options:

A) $ x^{2}+4x-8y-12=0 $

B) $ x^{2}-4x+8y+12=0 $

C) $ x^{2}+8y=12 $

D) $ x^{2}-4x+12=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ VS=\sqrt{{{(2-2)}^{2}}+{{(-3+1)}^{2}}}=2 $ . From $ {{(x-h)}^{2}}=-4a(y-k) $ Parabola is, $ {{(x-2)}^{2}}=-4.2(y+1) $

therefore $ {{(x-2)}^{2}}=-8(y+1) $

therefore $ x^{2}+4-4x=-8y-8 $

therefore $ x^{2}-4x+8y+12=0. $