Conic Sections Question 404

Question: The equation of the hyperbola whose conjugate axis is 5 and the distance between the foci is 13, is

Options:

A) $ 25x^{2}-144y^{2}=900 $

B) $ 144x^{2}-25y^{2}=900 $

C) $ 144x^{2}+25y^{2}=900 $

D) $ 25x^{2}+144y^{2}=900 $

Show Answer

Answer:

Correct Answer: A

Solution:

Conjugate axis is 5 and distance between foci = 13

therefore $ 2b=5 $ and $ 2ae=13 $ . Now, also we know for hyperbola $ b^{2}=a^{2}(e^{2}-1) $

therefore $ \frac{25}{4}=\frac{{{(13)}^{2}}}{4e^{2}}(e^{2}-1) $

therefore $ \frac{25}{4}=\frac{169}{4}-\frac{169}{4e^{2}} $ or $ e^{2}=\frac{169}{144} $

therefore $ e=\frac{13}{12} $

or $ a=6,b=\frac{5}{2} $ or hyperbola is $ \frac{x^{2}}{36}-\frac{y^{2}}{25/4}=1 $

therefore $ 25x^{2}-144y^{2}=900 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें