Conic Sections Question 414

Question: Which one of the following curves cuts the parabola $ y^{2}=4ax $ at right angles

[IIT 1994]

Options:

A) $ x^{2}+y^{2}=a^{2} $

B) $ y={e^{-x/2a}} $

C) $ y=ax $

D) $ x^{2}=4ay $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y^{2}=4ax $

therefore $ 2y{{( \frac{dy}{dx} )}_1}=4a $

therefore $ {{( \frac{dy}{dx} )}_1}=\frac{2a}{y} $ …..(i) Taking curve $ y={e^{-x/2a}} $

$ {{( \frac{dy}{dx} )}_2}={e^{-x/2a}}( -\frac{1}{2a} ) $

$ =-\frac{y}{2a} $

…..(ii) Both curves cut orthogonally if, $ {{( \frac{dy}{dx} )}_1}{{( \frac{dy}{dx} )}_2}=-1 $

therefore $ ( -\frac{y}{2a} ).( \frac{2a}{y} )=-1 $ .