Conic Sections Question 415

Question: The equation of the ellipse whose centre is (2, -3), one of the foci is (3, -3) and the corresponding vertex is (4, -3) is

Options:

A) $ \frac{{{(x-2)}^{2}}}{3}+\frac{{{(y+3)}^{2}}}{4}=1 $

B) $ \frac{{{(x-2)}^{2}}}{4}+\frac{{{(y+3)}^{2}}}{3}=1 $

C) $ \frac{x^{2}}{3}+\frac{y^{2}}{4}=1 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Foci $ =(3,-3) $

therefore $ ae=3-2=1 $

Vertex $ =(4,-3) $

therefore $ a=4-2=2 $

therefore $ e=\frac{1}{2} $

therefore $ b=a\sqrt{( 1-\frac{1}{4} )}=\frac{2}{2}\sqrt{3}=\sqrt{3} $

Therefore, equation of ellipse with centre $ (2,-3) $ is $ \frac{{{(x-2)}^{2}}}{4}+\frac{{{(y+3)}^{2}}}{3}=1 $ .