Conic Sections Question 417

Question: The value of m, for which the line $ y=mx+\frac{25\sqrt{3}}{3} $ , is a normal to the conic $ \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 $ , is

[MP PET 2004]

Options:

A) $ \sqrt{3} $

B) $ -\frac{2}{\sqrt{3}} $

C) $ -\frac{\sqrt{3}}{2} $

D) 1

Show Answer

Answer:

Correct Answer: B

Solution:

We know that the equation of the normal of the conic $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ at point $ (a\sec \theta ,b\tan \theta ) $ is $ ax\sec \theta +by\cot \theta =a^{2}+b^{2} $

or $ y=\frac{-a}{b}\sin \theta x+\frac{a^{2}+b^{2}}{b\cot \theta } $

Comparing above equation with equation $ y=mx+\frac{25\sqrt{3}}{3} $ and taking $ a=4,b=3 $

we get,

$ \frac{a^{2}+b^{2}}{b\cot \theta }=\frac{25\sqrt{3}}{3} $
$ \Rightarrow $ $ \tan \theta =\sqrt{3}\Rightarrow \theta =60^{o} $

and $ m=-\frac{a}{b}\sin \theta =\frac{-4}{3}\sin 60^{o} $ = $ \frac{-4}{3}\times \frac{\sqrt{3}}{2}=\frac{-2}{\sqrt{3}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें