Conic Sections Question 42

Question: C the centre of the hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ . The tangents at any point P on this hyperbola meets the straight lines $ bx-ay=0 $ and $ bx+ay=0 $ in the points Q and R respectively. Then $ CQ\ .\ CR= $

Options:

A) $ a^{2}+b^{2} $

B) $ a^{2}-b^{2} $

C) $ \frac{1}{a^{2}}+\frac{1}{b^{2}} $

D) $ \frac{1}{a^{2}}-\frac{1}{b^{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ P $ is $ (a\sec \theta ,b\tan \theta ) $

Tangen t at P is $ \frac{x\sec \theta }{a}-\frac{y\tan \theta }{b}=1 $

It meets $ bx-ay=0 $ i.e., $ \frac{x}{a}=\frac{y}{b} $ in Q Q is $ ( \frac{a}{\sec \theta -\tan \theta },\frac{-b}{\sec \theta -\tan \theta } ) $

It meets $ bx+ay=0 $ i.e., $ \frac{x}{a}=-\frac{y}{b} $ in R. R is $ ( \frac{a}{\sec \theta +\tan \theta },\frac{-b}{\sec \theta +\tan \theta } ) $

$ CQ.CR=\frac{\sqrt{a^{2}+b^{2}}}{(\sec \theta -\tan \theta )}.\frac{\sqrt{a^{2}+b^{2}}}{(\sec \theta +\tan \theta )} $

$ =a^{2}+b^{2} $ , $ {\because {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1} $ .