Conic Sections Question 429

Question: The equation of the normal to the hyperbola $ \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 $ at $ (-4,\ 0) $ is

[UPSEAT 2002]

Options:

A) $ y=0 $

B) $ y=x $

C) $ x=0 $

D) $ x=-y $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 $
$ \Rightarrow $ $ \frac{2x}{16}-\frac{2y}{9}\frac{dy}{dx}=0 $

therefore $ \frac{dy}{dx}=\frac{2x\times 9}{16\times 2y} $

$ =\frac{9}{16}\frac{x}{y} $

therefore $ {{( \frac{-dx}{dy} )} _{(-4,0)}}=\frac{-16}{9}\frac{y}{x}=0 $

Hence, equation of normal

therefore $ (y-0)=0(x+4) $

therefore $ y=0. $