Conic Sections Question 430

Question: The angle of intersection of the curves $ y^{2}=2x/\pi $ and $ y=\sin x $ , is

[Roorkee 1998]

Options:

A) $ {{\cot }^{-1}}(-1/\pi ) $

B) $ {{\cot }^{-1}}\pi $

C) $ {{\cot }^{-1}}(-\pi ) $

D) $ {{\cot }^{-1}}(1/\pi ) $

Show Answer

Answer:

Correct Answer: B

Solution:

The curves $ y^{2}=2x/\pi $ and $ y=\sin x $ intersect at $ (0,0) $ and $ (\pi /2,1) $ . Let the gradients of the tangents to the curves be $ m_1 $ and $ m_2 $ respectively. Then $ m_1=\frac{dy}{dx}=\frac{1}{\pi y} $ and $ m_2=\frac{dy}{dx}=\cos x $

At $ (\pi /2,1) $ , $ m_1=\frac{1}{\pi } $ , $ m_2=\cos \frac{\pi }{2}=0 $

Thus $ \tan \theta =\frac{(1/\pi )-0}{1+(1/\pi )(0)}=\frac{1}{\pi } $

therefore $ \theta ={{\cot }^{-1}}\pi $ .