Conic Sections Question 435

Question: The directrix of the hyperbola is $ \frac{x^{2}}{9}-\frac{y^{2}}{4}=1 $

[UPSEAT 2003]

Options:

A) $ x=9/\sqrt{13} $

B) $ y=9/\sqrt{13} $

C) $ x=6/\sqrt{13} $

D) $ y=6/\sqrt{13} $

Show Answer

Answer:

Correct Answer: A

Solution:

Directrix of hyperbola $ x=\frac{a}{e} $ , where $ e=\sqrt{\frac{b^{2}+a^{2}}{a^{2}}}=\frac{\sqrt{b^{2}+a^{2}}}{a} $

Directrix is, $ x=\frac{a^{2}}{\sqrt{a^{2}+b^{2}}}=\frac{9}{\sqrt{9+4}} $

therefore $ x=\frac{9}{13} $