Conic Sections Question 445

If the angle between the lines joining the end points of minor axis of an ellipse with its foci is $ \frac{x^{2}}{25}+\frac{y^{2}}{25}=1 $ , then the eccentricity of the ellipse is

[IIT Screening 1997; Pb. CET 2001; DCE 2002]

Options:

1/2

B) $ 1/\sqrt{2} $

C) $ \sqrt{3}/2 $

D) $ 1/2\sqrt{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

Since $ \angle FBF’=\frac{\pi }{2} $ (Given)
$ \therefore $ $ \angle FBC=\angle F’BC=\pi /4 $

$ CB=CF\Rightarrow b=ae $

therefore $ b^{2}=a^{2}(1-e^{2}) $

therefore $ a^{2}(1-e^{2}) \neq a^{2}e^{2} $

therefore $ 1-e^{2} \neq e^{2} $

therefore $ 2e^{2}\neq1 $

therefore $ e=1/\sqrt{2} $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index