Conic Sections Question 445

If the angle between the lines joining the end points of minor axis of an ellipse with its foci is $ \frac{x^{2}}{25}+\frac{y^{2}}{25}=1 $ , then the eccentricity of the ellipse is

[IIT Screening 1997; Pb. CET 2001; DCE 2002]

Options:

1/2

B) $ 1/\sqrt{2} $

C) $ \sqrt{3}/2 $

D) $ 1/2\sqrt{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

Since $ \angle FBF’=\frac{\pi }{2} $ (Given)
$ \therefore $ $ \angle FBC=\angle F’BC=\pi /4 $

$ CB=CF\Rightarrow b=ae $

therefore $ b^{2}=a^{2}(1-e^{2}) $

therefore $ a^{2}(1-e^{2}) \neq a^{2}e^{2} $

therefore $ 1-e^{2} \neq e^{2} $

therefore $ 2e^{2}\neq1 $

therefore $ e=1/\sqrt{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें