Conic Sections Question 448

Question: The equation of the hyperbola whose foci are the foci of the ellipse $ \frac{x^{2}}{25}+\frac{y^{2}}{9}=1 $ and the eccentricity is 2, is

Options:

A) $ \frac{x^{2}}{4}+\frac{y^{2}}{12}=1 $

B) $ \frac{x^{2}}{4}-\frac{y^{2}}{12}=1 $

C) $ \frac{x^{2}}{12}+\frac{y^{2}}{4}=1 $

D) $ \frac{x^{2}}{12}-\frac{y^{2}}{4}=1 $

Show Answer

Answer:

Correct Answer: B

Solution:

Here for given ellipse $ a=5,\ b=3,\ b^{2}=a^{2}(1-e^{2}) $

therefore $ e=\frac{4}{5} $

Therefore, focus is (- 4, 0), (4, 0). Given eccentricity of hyperbola = 2 $ a=\frac{ae}{e}=\frac{4}{2}=2 $ and $ b=2\sqrt{(4-1)}=2\sqrt{3} $

Hence hyperbola is $ \frac{x^{2}}{4}-\frac{y^{2}}{12}=1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें