Conic Sections Question 448

Question: The equation of the hyperbola whose foci are the foci of the ellipse $ \frac{x^{2}}{25}+\frac{y^{2}}{9}=1 $ and the eccentricity is 2, is

Options:

A) $ \frac{x^{2}}{4}+\frac{y^{2}}{12}=1 $

B) $ \frac{x^{2}}{4}-\frac{y^{2}}{12}=1 $

C) $ \frac{x^{2}}{12}+\frac{y^{2}}{4}=1 $

D) $ \frac{x^{2}}{12}-\frac{y^{2}}{4}=1 $

Show Answer

Answer:

Correct Answer: B

Solution:

Here for given ellipse $ a=5,\ b=3,\ b^{2}=a^{2}(1-e^{2}) $

therefore $ e=\frac{4}{5} $

Therefore, focus is (- 4, 0), (4, 0). Given eccentricity of hyperbola = 2 $ a=\frac{ae}{e}=\frac{4}{2}=2 $ and $ b=2\sqrt{(4-1)}=2\sqrt{3} $

Hence hyperbola is $ \frac{x^{2}}{4}-\frac{y^{2}}{12}=1 $ .