Conic Sections Question 449

Question: The centre of an ellipse is C and PN is any ordinate and A, A- are the end points of major axis, then the value of $ \frac{PN^{2}}{AN\ .\ A’N} $ is

Options:

A) $ \frac{b^{2}}{a^{2}} $

B) $ \frac{a^{2}}{b^{2}} $

C) $ a^{2}+b^{2} $

D) 1

Show Answer

Answer:

Correct Answer: A

Solution:

Let ellipse be $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $

$ P=(a\cos \theta ,b\sin \theta ),A\text{ and}A’\equiv (\pm a,0),N\equiv (a\cos \theta ,0), $

$ PN=b\sin \theta , $

$ AN=a(1-\cos \theta ), $

$ A’N=a(1+\cos \theta ) $

$ \frac{{{(PN)}^{2}}}{ANA’N}=\frac{b^{2}{{\sin }^{2}}\theta }{a^{2}(1-\cos \theta )(1+\cos \theta )}=\frac{b^{2}}{a^{2}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें