Conic Sections Question 456

Question: If the foci of the ellipse $ \frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1 $ and the hyperbola $ \frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25} $ coincide, then the value of $ b^{2} $ is

[MNR 1992; UPSEAT 2001; AIEEE 2003; Karnataka CET 2004; Kerala (Engg.) 2005]

Options:

A) 1

B) 5

C) 7

D) 9

Show Answer

Answer:

Correct Answer: C

Solution:

Hyperbola is $ \frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25} $

$ a=\sqrt{\frac{144}{25}},b=\sqrt{\frac{81}{25}},e_1=\sqrt{1+\frac{81}{144}}=\sqrt{\frac{225}{144}}=\frac{15}{12}=\frac{5}{4} $

Therefore, foci $ =(ae_1,0)=( \frac{12}{5}.\frac{5}{4},0 )=(3,0) $

Therefore, focus of ellipse $ =(4e,0) $ i.e. $ (3,0) $

therefore $ x^{2}+ $

Hence $ b^{2}=16( 1-\frac{9}{16} )=7 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें