Conic Sections Question 458

Question: A tangent to a hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ intercepts a length of unity from each of the co-ordinate axes, then the point (a, b) lies on the rectangular hyperbola

Options:

A) $ x^{2}-y^{2}=2 $

B) $ x^{2}-y^{2}=1 $

C) $ x^{2}-y^{2}=-1 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Tangent at $ (a\sec \theta ,b\tan \theta ) $ is, $ \frac{x}{(a/\sec \theta )}-\frac{y}{(b/\tan \theta )}=1 $ or $ \frac{a}{\sec \theta }=1,\frac{b}{\tan \theta }=1 $

therefore $ a=\sec \theta $ , $ b=\tan \theta $ or $ (a,b) $ lies on $ x^{2}-y^{2}=1 $ .