Conic Sections Question 462

Question: If transverse and conjugate axes of a hyperbola are equal, then its eccentricity is

[MP PET 2003]

Options:

A) $ \sqrt{3} $

B) $ \sqrt{2} $

C) $ 1/\sqrt{2} $

D) 2

Show Answer

Answer:

Correct Answer: B

Solution:

Hyperbola is $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ . Here, transverse and conjugate axis of a hyperbola is equal. i.e., $ a=b $
$ \therefore x^{2}-y^{2}=a^{2} $ ; which is a rectangular hyperbola.

Hence, eccentricity $ e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{2} $ .