Conic Sections Question 462

Question: If transverse and conjugate axes of a hyperbola are equal, then its eccentricity is

[MP PET 2003]

Options:

A) $ \sqrt{3} $

B) $ \sqrt{2} $

C) $ 1/\sqrt{2} $

D) 2

Show Answer

Answer:

Correct Answer: B

Solution:

Hyperbola is $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ . Here, transverse and conjugate axis of a hyperbola is equal. i.e., $ a=b $
$ \therefore x^{2}-y^{2}=a^{2} $ ; which is a rectangular hyperbola.

Hence, eccentricity $ e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें