Conic Sections Question 463

Question: Let P be a variable point on the ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ with foci $ F_1 $ and $ F_2 $ . If A is the area of the triangle $ PF_1F_2 $ , then maximum value of A is

[IIT 1994; Kerala (Engg.) 2005]

Options:

ab

abe

C) $ \frac{e}{ab} $

D) $ \frac{ab}{e} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ b\sqrt{a^{2}-b^{2}} $ if $ a>b;a\sqrt{b^{2}-a^{2}} $ if $ P $ Area of $ PF_1F_2=\frac{1}{2}(F_1F_2)\times PL $

$ =\frac{1}{2}(2ac)\times y=ae\frac{b}{a}\sqrt{a^{2}-x^{2}} $

$ A=eb\sqrt{a^{2}-x^{2}} $ , which is maximum when $ x=0 $ . Thus the maximum value of A is abe.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें