Conic Sections Question 473

Question: The eccentricity of the hyperbola conjugate to $ x^{2}-3y^{2}=2x+8 $ is

[UPSEAT 2004]

Options:

A) $ \frac{2}{\sqrt{3}} $

B) $ \sqrt{3} $

C) 2

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Given, equation of hyperbola is $ x^{2}-3y^{2}=2x+8 $

therefore $ x^{2}-2x-3y^{2}=8 $

therefore $ {{(x-1)}^{2}}-3y^{2}=9 $

therefore $ \frac{{{(x-1)}^{2}}}{9}-\frac{y^{2}}{3}=1 $

Conjugate of this hyperbola is $ -\frac{{{(x-1)}^{2}}}{9}+\frac{y^{2}}{3}=1 $

and its eccentricity $ (e)=\sqrt{( \frac{a^{2}+b^{2}}{b^{2}} )} $

Here, $ a^{2}=9 $ , $ b^{2}=3 $ ;
$ \therefore $ $ e=\sqrt{\frac{9+3}{3}}=2 $ .