Conic Sections Question 474

Question: The locus of a point $ P(\alpha ,\beta ) $ moving under the condition that the line $ y=\alpha x+\beta $ is a tangent to the hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ is

[AIEEE 2005]

Options:

A) A parabola

B) A hyperbola

C) An ellipse

D) A circle

Show Answer

Answer:

Correct Answer: B

Solution:

If $ y=mx+c $ is tangent to the hyperbola then $ c^{2}=a^{2}m^{2}-b^{2} $ . Here $ {{\beta }^{2}}=a^{2}{{\alpha }^{2}}-b^{2} $ .

Hence locus of P(a, b) is $ a^{2}x^{2}-y^{2}=b^{2} $ , which is a hyperbola.