Conic Sections Question 481

Question: If q is the acute angle of intersection at a real point of intersection of the circle $ x^{2}+y^{2}=5 $ and the parabola $ y^{2}=4x $ then tanq is equal to

[Karnataka CET 2005]

Options:

A) 1

B) $ \sqrt{3} $

C) 3

D) $ \frac{1}{\sqrt{3}} $

Show Answer

Answer:

Correct Answer: C

Solution:

Solving equations $ x^{2}+y^{2}=5 $ and $ y^{2}=4x $

we get $ x^{2}+4x-5=0 $ i.e., $ x=1,-5 $

For $ x=1 $ ; $ y^{2}=4 $

therefore $ y=\pm 2 $

For $ x=-5 $ ; $ y^{2}=-20 $ (imaginary values) Points are (1, 2)(1, -2); $ m_1 $ for $ x^{2}+y^{2}=5 $ at (1, 2) $ {{. \frac{dy}{dx}=-\frac{x}{y} |} _{(1,2)}}=-\frac{1}{2} $ Similarly, $ m_2 $ for $ y^{2}=4x $ at (1,2) is 1. $ \tan \theta =| \frac{m_1-m_2}{1+m_1m_2} |=| \frac{-\frac{1}{2}-1}{1-\frac{1}{2}} |=3 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें