Conic Sections Question 482

Question: The equation of the hyperbola in the standard form (with transverse axis along the x-axis) having the length of the latus rectum = 9 units and eccentricity = 5/4 is

[Kerala (Engg.) 2005]

Options:

A) $ \frac{x^{2}}{16}-\frac{y^{2}}{18}=1 $

B) $ \frac{x^{2}}{36}-\frac{y^{2}}{27}=1 $

C) $ \frac{x^{2}}{64}-\frac{y^{2}}{36}=1 $

D) $ \frac{x^{2}}{36}-\frac{y^{2}}{64}=1 $

E) $ \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \because \frac{2b^{2}}{a^{2}}=9 $

therefore $ 2b^{2}=9a $ ……(i) Now $ b^{2}=a^{2}(e^{2}-1)=\frac{9}{16}a^{2} $

therefore $ a=\frac{4}{3}b $ …..(ii), ( $ \because $

$ e=\frac{5}{4} $ ) From (i) and (ii), $ b=6 $ , $ a=8 $

Hence, equation of hyperbola $ \frac{x^{2}}{64}-\frac{y^{2}}{36}=1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें