Conic Sections Question 483

Question: If $ 4x^{2}+py^{2}=45 $ and $ x^{2}-4y^{2}=5 $ cut orthogonally, then the value of p is

[Kerala (Engg.) 2005]

Options:

A) 1/9

B) 1/3

C) 3

D) 18

E) 9

Show Answer

Answer:

Correct Answer: E

Solution:

Slope of 1st curve $ {{( \frac{dy}{dx} )} _{I}}=-\frac{4x}{py} $

Slope of 2nd curve $ {{( \frac{dy}{dx} )} _{II}}=\frac{x}{4y} $

For orthogonal intersection $ ( -\frac{4x}{py} )( \frac{x}{4y} )=-1 $

therefore $ x^{2}=py^{2} $

On solving equations of given curves $ x=3 $ , $ y=1 $

$ p(1)={{(3)}^{2}}=9 $

therefore $ p=9 $ .