Conic Sections Question 484

Find the equation of the axis of the given hyperbola $ \frac{x^{2}}{3}-\frac{y^{2}}{2}=1 $ which is equally inclined to the axes

[DCE 2005]

Options:

A) $ y=x+1 $

B) $ y=x-1 $

C) $ y=x+2 $

D) $ y=x-2 $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{x^{2}}{3}-\frac{y^{2}}{2}=1 $

$ \because $ Equation of tangent are equally inclined to the axis i.e., $ \tan \theta =1=m $ . Eq. of tangent $ y=mx+\sqrt{a^{2}m^{2}+b^{2}} $

Given eq. $ \frac{x^{2}}{3}-\frac{y^{2}}{2}=1 $ is a eq. of hyperbola which is of form $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ . Now, on comparing $ a^{2}=3 $ , $ b^{2}=2 $

$ y=1.x+\sqrt{3\times {{(1)}^{2}}-2} $

therefore $ y=x+1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें