Conic Sections Question 484

Question: Find the equation of axis of the given hyperbola $ \frac{x^{2}}{3}-\frac{y^{2}}{2}=1 $ which is equally inclined to the axes

[DCE 2005]

Options:

A) $ y=x+1 $

B) $ y=x-1 $

C) $ y=x+2 $

D) $ y=x-2 $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{x^{2}}{3}-\frac{y^{2}}{2}=1 $

$ \because $ Equation of tangent are equally inclined to the axis i.e., $ \tan \theta =1=m $ . Eq. of tangent $ y=mx+\sqrt{a^{2}m^{2}-b^{2}} $

Given eq. $ \frac{x^{2}}{3}-\frac{y^{2}}{2}=1 $ is a eq. of hyperbola which is of form $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ . Now, on comparing $ a^{2}=3 $ , $ b^{2}=2 $

$ y=1.x+\sqrt{3\times {{(1)}^{2}}-2} $

therefore $ y=x+1 $ .