Conic Sections Question 490

Question: If the normal at any point P on the ellipse cuts the major and minor axes in G and g respectively and C be the centre of the ellipse, then

[Kurukshetra CEE 1998]

Options:

A) $ a^{2}{{(CG)}^{2}}+b^{2}{{(Cg)}^{2}}={{(a^{2}-b^{2})}^{2}} $

B) $ a^{2}{{(CG)}^{2}}-b^{2}{{(Cg)}^{2}}={{(a^{2}-b^{2})}^{2}} $

C) $ a^{2}{{(CG)}^{2}}-b^{2}{{(Cg)}^{2}}={{(a^{2}+b^{2})}^{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let at a point $ (x_1,y_1) $ normal will be $ \frac{(x-x_1)a^{2}}{x_1}=\frac{(y-y_1)b^{2}}{y_1} $

At $ G,y=0 $

therefore $ x=CG=\frac{x_1(a^{2}-b^{2})}{a^{2}} $

At $ g,x=0 $

therefore $ y=Cg=\frac{y_1(b^{2}-a^{2})}{b^{2}} $

$ \frac{x_1^{2}}{a^{2}}+\frac{y_1^{2}}{b^{2}}=1 $

therefore $ a^{2}{{(CG)}^{2}}+b^{2}{{(Cg)}^{2}}={{(a^{2}-b^{2})}^{2}}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें