Conic Sections Question 490

Question: If the normal at any point P on the ellipse cuts the major and minor axes in G and g respectively and C be the centre of the ellipse, then

[Kurukshetra CEE 1998]

Options:

A) $ a^{2}{{(CG)}^{2}}+b^{2}{{(Cg)}^{2}}={{(a^{2}-b^{2})}^{2}} $

B) $ a^{2}{{(CG)}^{2}}-b^{2}{{(Cg)}^{2}}={{(a^{2}-b^{2})}^{2}} $

C) $ a^{2}{{(CG)}^{2}}-b^{2}{{(Cg)}^{2}}={{(a^{2}+b^{2})}^{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let at a point $ (x_1,y_1) $ normal will be $ \frac{(x-x_1)a^{2}}{x_1}=\frac{(y-y_1)b^{2}}{y_1} $

At $ G,y=0 $

therefore $ x=CG=\frac{x_1(a^{2}-b^{2})}{a^{2}} $

At $ g,x=0 $

therefore $ y=Cg=\frac{y_1(b^{2}-a^{2})}{b^{2}} $

$ \frac{x_1^{2}}{a^{2}}+\frac{y_1^{2}}{b^{2}}=1 $

therefore $ a^{2}{{(CG)}^{2}}+b^{2}{{(Cg)}^{2}}={{(a^{2}-b^{2})}^{2}}. $