Conic Sections Question 501

Question: The latus rectum of the hyperbola $ 9x^{2}-16y^{2}+72x-32y-16=0 $ is

[Pb. CET 2004]

Options:

A) $ \frac{9}{2} $

B) $ -\frac{9}{2} $

C) $ \frac{32}{3} $

D) $ -\frac{32}{3} $

Show Answer

Answer:

Correct Answer: A

Solution:

Given equation of hyperbola is, $ 9x^{2}-16y^{2}+72x-32y-16=0 $

therefore $ 9(x^{2}+8x)-16(y^{2}+2y)-16=0 $

therefore $ 9{{(x+4)}^{2}}-16{{(y+1)}^{2}}=144 $

therefore $ \frac{{{(x+4)}^{2}}}{16}-\frac{{{(y+1)}^{2}}}{9}=1 $ Therefore, latus rectum = $ \frac{2b^{2}}{a}=2\times \frac{9}{4}=\frac{9}{2} $ .