Conic Sections Question 505

Question: The locus of the poles of normal chords of an ellipse is given by

[UPSEAT 2001]

Options:

A) $ \frac{a^{6}}{x^{2}}+\frac{b^{6}}{y^{2}}={{(a^{2}-b^{2})}^{2}} $

B) $ \frac{a^{3}}{x^{2}}+\frac{b^{3}}{y^{2}}={{(a^{2}-b^{2})}^{2}} $

C) $ \frac{a^{6}}{x^{2}}+\frac{b^{6}}{y^{2}}={{(a^{2}+b^{2})}^{2}} $

D) $ \frac{a^{3}}{x^{2}}+\frac{b^{3}}{y^{2}}={{(a^{2}+b^{2})}^{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

Let the equation of the ellipse is $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $

…..(i) Let $ (h,k) $ be the poles. Now polar of $ (h,k) $ w.r.t. the ellipse is given by $ \frac{xh}{a^{2}}+\frac{yk}{b^{2}}=1 $ ……(ii) If it is a normal to the ellipse then it must be identical with $ ax\sec \theta -bycosec\theta ={a^{2}}-b^{2} $ ……(iii)

Hence comparing (ii) and (iii), we get $ \frac{(h/a^{2})}{a\sec \theta }=\frac{(k/b^{2})}{-b\cos ec\theta }=\frac{1}{(a^{2}-b^{2})} $

therefore $ \cos \theta =\frac{a^{3}}{h(a^{2}-b^{2})} $ and $ \sin \theta =\frac{b^{3}}{k(a^{2}-b^{2})} $

Squaring and adding we get,

$ 1=\frac{1}{{{(a^{2}-b^{2})}^{2}}}( \frac{a^{6}}{h^{2}}+\frac{b^{6}}{k^{2}} ) $

Required locus of $ (h,k) $ is $ \frac{a^{6}}{x^{2}}+\frac{b^{6}}{y^{2}}={{(a^{2}-b^{2})}^{2}}. $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें