Conic Sections Question 507

Question: If a line $ y=3x+1 $ cuts the parabola $ x^{2}-4x-4y+20=0 $ at A and B, then the tangent of the angle subtended by line segment AB, at the origin is

Options:

A) $ 8\sqrt{3}/205 $

B) $ 8\sqrt{3}/209 $

C) $ 8\sqrt{3}/215 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] The joint equation of OA and OB is $ x^{2}-4x(y-3x)-4y(y-3x)+20{{(y-3x)}^{2}}=0 $

Making the equation of the parabola homogeneous using a straight line.

We get $ x^{2}(1+12+180)-y^{2}(4-20)-xy(4-12+120)=0 $ or $ 193x^{2}+16y^{2}-112xy=0 $

$ \tan \theta =\frac{2\sqrt{h^{2}-ab}}{a+b} $

$ =\frac{2\sqrt{56^{2}-193\times 16}}{193+16}=\frac{8\sqrt{3}}{209} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें