Conic Sections Question 521

Question: If $ \theta $ and $ \varphi $ are eccentric angles of the ends of a pair of conjugate diameters of the ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ , then $ \theta -\varphi $ is equal to

Options:

A) $ \pm \frac{\pi }{2} $

B) $ \pm \pi $

C) 0

D) None of thesew

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ y=m_1x $ and $ y=m_2x $ be a pair of conjugate diameters of an ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ and let $ P(a\cos \theta ,b\sin \theta ) $ and $ Q(a\cos \varphi ,b\sin \varphi ) $ be ends of these two diameters. Then $ m_1m_2=-\frac{b^{2}}{a^{2}} $

$ \Rightarrow \frac{b\sin \theta -0}{a\cos \theta -0}\times \frac{b\sin \varphi -0}{a\cos \varphi -0}=-\frac{b^{2}}{a^{2}} $

therefore $ \sin \theta \sin \varphi =-\cos \theta \cos \varphi $

therefore $ \cos (\theta -\varphi )=0\Rightarrow \theta -\varphi =\pm \frac{\pi }{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें