Conic Sections Question 535

Question: If PQ is a double ordinate of hyperbola $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ such that OPQ is an equilateral triangle, O being the centre of the hyperbola. Then the eccentricity e of the hyperbola satisfies

[EAMCET 1999]

Options:

A) $ 1<e<2/\sqrt{3} $

B) $ e=2/\sqrt{3} $

C) $ e=\sqrt{3}/2 $

D) $ e>2/\sqrt{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

Let P $ (a\sec \theta ,b\tan \theta );Q(a\sec \theta ,-b\tan \theta ) $ be end points of double ordinates and $ C(0,0) $ , is the centre of the hyperbola. Now $ PQ=2b\tan \theta $

$ CQ=CP=\sqrt{a^{2}{{\sec }^{2}}\theta +b^{2}{{\tan }^{2}}\theta } $

Since $ CQ=CP=PQ $ ,
$ \therefore 4b^{2}{{\tan }^{2}}\theta =a^{2}{{\sec }^{2}}\theta +b^{2}{{\tan }^{2}}\theta $

therefore $ 3b^{2}{{\tan }^{2}}\theta =a^{2}{{\sec }^{2}}\theta $

therefore $ 3b^{2}{{\sin }^{2}}\theta =a^{2} $

therefore $ 3a^{2}(e^{2}-1){{\sin }^{2}}\theta =a^{2} $

therefore $ 3(e^{2}-1){{\sin }^{2}}\theta =1 $

therefore $ \frac{1}{3(e^{2}-1)}={{\sin }^{2}}\theta <1 $ , $ (\because {{\sin }^{2}}\theta <1) $

$ \Rightarrow $ $ \frac{1}{e^{2}-1}<3 $

$ \Rightarrow e^{2}-1>\frac{1}{3} $

$ \Rightarrow e^{2}>\frac{4}{3} $

$ \Rightarrow e>\frac{2}{\sqrt{3}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें