Conic Sections Question 54

Question: The equation of the common tangent of the parabolas $ x^{2}=108y $ and $ y^{2}=32x $ , is

Options:

A) $ 2x+3y=36 $

B) $ 2x+3y+36=0 $

C) $ 3x+2y=36 $

D) $ 3x+2y+36=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ S_1\equiv x^{2}-108y=0 $

$ T\equiv xx_1-2a(y+y_1)=0 $

therefore $ xx_1-54( y+\frac{x_1^{2}}{108} )=0 $

$ S_2\equiv y^{2}-32x=0 $

$ T\equiv yy_2-2a(x+x_2)=0 $

therefore $ yy_2-16( x+\frac{y_2^{2}}{32} )=0 $

$ \frac{x_1}{16}=\frac{54}{y_2}=\frac{-x_1^{2}}{y_2^{2}}=r $

therefore $ x_1=16r $ and $ y_2=\frac{54}{r} $

$ \frac{-{{(16r)}^{2}}}{{{(54/r)}^{2}}}=r $

therefore $ r=-\frac{9}{4} $

$ x_1=-36,\ y_2=-24,\ y_1=\frac{{{(36)}^{2}}}{108}=12,\ x_2=18 $ . Equation of common tangent $ (y-12)=\frac{-36}{54}(x+36)\Rightarrow 2x+3y+36=0 $

Aliter: Using direct formula of common tangent $ y{b^{1/3}}+x{a^{1/3}}+{{(ab)}^{2/3}}=0 $ , where $ a=8 $ and $ b=27 $ .

Hence the required tangent is $ 3y+2x+36=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें