Conic-Sections Question 542

Question: If p is the length of the perpendicular form the focus S of the ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ to a tangent at a point P on the ellipse, then $ \frac{2a}{SP}-1= $

Options:

A) $ \frac{a^{2}}{p^{2}} $

B) $ \frac{b^{2}}{p^{2}} $

C) $ p^{2} $

D) $ \frac{a^{2}+b^{2}}{p^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let the point P be $ (a,cos,\theta ,b,sin,\theta ) $ The tangent at P is $ \frac{x}{a}\cos \theta +\frac{y}{b}\sin \theta =1 $ ? (i) The perpendicular distance P of S (ae, 0) Form (i) is given by $ p^{2}=\frac{{{(ecos\theta -1)}^{2}}}{\frac{{{\cos }^{2}}\theta }{a^{2}}+\frac{{{\sin }^{2}}\theta }{b^{2}}} $

$ \Rightarrow \frac{1}{p^{2}}=\frac{\frac{{{\cos }^{2}}\theta }{a^{2}}+\frac{{{\sin }^{2}}\theta }{b^{2}}}{{{(ecos\theta -1)}^{2}}} $

$ \Rightarrow \frac{b^{2}}{p^{2}}=\frac{\frac{b^{2}}{a^{2}}{{\cos }^{2}}\theta +1-{{\cos }^{2}}\theta }{{{(ecos\theta -1)}^{2}}} $ $ =\frac{( \frac{b^{2}}{a^{2}}-1 ){{\cos }^{2}}\theta +1}{{{(ecos\theta -1)}^{2}}} $ $ =\frac{1-e^{2}{{\cos }^{2}}\theta }{{{(ecos\theta -1)}^{2}}}=\frac{1+e\cos \theta }{1-e\cos \theta } $ Now $ SP=a(1-ecos\theta ) $

$ \therefore \frac{2a}{SP}-1=\frac{2a}{a(1-ecos\theta )}-1=\frac{1+e\cos \theta }{1-e\cos \theta }=\frac{b^{2}}{p^{2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें