Conic-Sections Question 543

Question: If the line $ x\cos \alpha +y\sin \alpha =p $ represents the common chord of the circles $ x^{2}+y^{2}=a^{2} $ and $ x^{2}+y^{2}+b^{2}(a>b), $ where A and B lie on the first circle and P and Q lie on the second circle, then AP is equal to

Options:

A) $ \sqrt{a^{2}+p^{2}}+\sqrt{b^{2}+p^{2}} $

B) $ \sqrt{a^{2}-p^{2}}+\sqrt{b^{2}-p^{2}} $

C) $ \sqrt{a^{2}-p^{2}}-\sqrt{b^{2}-p^{2}} $

D) $ \sqrt{a^{2}+p^{2}}-\sqrt{b^{2}+p^{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] The given circles are concentric with centre at (0, 0) and the length of the perpendicular from (0, 0) on the given line is p. Let OL = p Then, $ AL=\sqrt{OA^{2}-OL^{2}}=\sqrt{a^{2}-p^{2}} $ and $ PL=\sqrt{OP^{2}-OL^{2}}=\sqrt{b^{2}-p^{2}} $
$ \Rightarrow AP=\sqrt{a^{2}-p^{2}}-\sqrt{b^{2}-p^{2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें