Conic-Sections Question 545

Question: The length of the chord $ x+y=3 $ intercepted by the circle $ x^{2}+y^{2}-2x-2y-2=0 $ is

Options:

A) $ \frac{7}{2} $

B) $ \frac{3\sqrt{3}}{2} $

C) $ \sqrt{14} $

D) $ \frac{\sqrt{7}}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] The centre of the circle is $ C(1,1) $ and radius of the circle is 2, perpendicular distance from C on AB, the chord $ x+y=3 $ $ CD=| \frac{1+1-3}{\sqrt{2}} |=\frac{1}{\sqrt{2}} $
$ \therefore AD=\sqrt{4-\frac{1}{2}}=\sqrt{\frac{7}{2}} $ $ [AD=\sqrt{AC^{2}-CD^{2}}] $ Hence, the length of the chord $ AB=2AD=2\sqrt{\frac{7}{2}}=\sqrt{14} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें