Conic-Sections Question 550
Question: If tangents are drawn from any point on the line $ x+4a=0 $ to the parabola $ y^{2}=4ax, $ then their chord of contact subtends angle at the vertex equal to
Options:
A) $ \frac{\pi }{4} $
B) $ \frac{\pi }{3} $
C) $ \frac{\pi }{2} $
D) $ \frac{\pi }{6} $
Show Answer
Answer:
Correct Answer: C
Solution:
[c] Let  $ R(-4a,k) $  be any point on the line  $ x=-4a. $  The equation of chord of contact PQ w.r.t.  $ P(-4a,k) $  is  $ y.k=2a(x-4a) $                                      ?. (1) Making equation of parabola  $ y^{2}=4ax $  Homogeneous using (1), we get  $ y^{2}=4ax( \frac{2ax-yk}{8a^{2}} ) $
$ \Rightarrow 8a^{2}x^{2}-8a^{2}y^{2}-4akxy=0 $  This represents the pair of straight lines AP and AQ. Since coefficient of  $ x^{2}+ $  coefficient of  $ y^{2}=0\therefore \angle PAQ=90{}^\circ  $  i.e., chord of contact PQ subtends a right angle at the vertex.
 BETA
  BETA 
             
             
           
           
           
          