Conic-Sections Question 550

Question: If tangents are drawn from any point on the line $ x+4a=0 $ to the parabola $ y^{2}=4ax, $ then their chord of contact subtends angle at the vertex equal to

Options:

A) $ \frac{\pi }{4} $

B) $ \frac{\pi }{3} $

C) $ \frac{\pi }{2} $

D) $ \frac{\pi }{6} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let $ R(-4a,k) $ be any point on the line $ x=-4a. $ The equation of chord of contact PQ w.r.t. $ P(-4a,k) $ is $ y.k=2a(x-4a) $ ?. (1) Making equation of parabola $ y^{2}=4ax $ Homogeneous using (1), we get $ y^{2}=4ax( \frac{2ax-yk}{8a^{2}} ) $
$ \Rightarrow 8a^{2}x^{2}-8a^{2}y^{2}-4akxy=0 $ This represents the pair of straight lines AP and AQ. Since coefficient of $ x^{2}+ $ coefficient of $ y^{2}=0\therefore \angle PAQ=90{}^\circ $ i.e., chord of contact PQ subtends a right angle at the vertex.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें