Conic-Sections Question 552

Question: If from any point P, tangents PT, PT? are drawn to two given circles with centres A and B respectively; and if PN is the perpendicular form P on their radical axis, then $ PT^{2}-PT{{’}^{2}}= $

Options:

A) PN.AB

B) $ 2PN.AB $

C) $ 4PN.AB $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let the two given circles be $ x^{2}+y^{2}+2g_1x+c=0 $ ? (1) And $ x^{2}+y^{2}+2g_2x+c=0 $ ? (2) Their centres are $ A(-g_1,0) $ and $ B(-g_2,0) $

$ \therefore ,AB=g_1-g_2 $ Let P be the point $ (x_1,y_1). $ Then, $ PT=\sqrt{x^2_1+y^2_1+2g_1x_1+c}; $ $ PT=\sqrt{x^2_1+y^2_1+2g_2x_1+c} $ Radical axis of (1) and (2) is $ 2(g_1-g_2)x=0 $ or $ x=0, $ $ PN= $ Length of $ \bot $ from P on radical axis $ =x_1. $

$ \therefore PT^{2}-PT{{’}^{2}} $ $ =(x^2_1+y^2_1+2g_1x_1+c)-(x^2_1+y^2_1+2g_2x_1+c) $ $ =2x_1(g_1-g_2)=2PN.AB $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें