Conic-Sections Question 554

Question: Let d be the perpendicular distance from the centre of the ellipse $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $ to the tangent drawn at a point P on the ellipse. If $ F_1 $ and $ F_2 $ be the foci of the ellipse, then $ {{(PF_1-PF_2)}^{2}}= $

Options:

A) $ 4a^{2}( 1-\frac{b^{2}}{d^{2}} ) $

B) $ a^{2}( 1-\frac{b^{2}}{d^{2}} ) $

C) $ 4a^{2}( 1-\frac{a^{2}}{d^{2}} ) $

D) $ b^{2}( 1-\frac{a^{2}}{d^{2}} ) $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let the point P be $ (acos\theta ,bsin\theta ) $ The equation of tangent at P is $ \frac{x\cos \theta }{a}+\frac{y\sin \theta }{b}=1 $ ? (1) If d be the length of perpendicular from the centre $ C(0,0) $ of the ellipse to the tangent given by (1) then $ d=\frac{1}{\sqrt{\frac{{{\cos }^{2}}\theta }{a^{2}}+\frac{{{\sin }^{2}}\theta }{b^{2}}}} $

$ \Rightarrow \frac{1}{d^{2}}=\frac{{{\cos }^{2}}\theta }{a^{2}}+\frac{{{\sin }^{2}}\theta }{b^{2}} $

$ \Rightarrow \frac{b^{2}}{d^{2}}=\frac{b^{2}}{a^{2}}{{\cos }^{2}}\theta +1-{{\cos }^{2}}\theta $

$ \Rightarrow 1-\frac{b^{2}}{d^{2}}=( 1-\frac{b^{2}}{a^{2}} ){{\cos }^{2}}\theta =e^{2}{{\cos }^{2}}\theta $ ? (2) Now, $ {{(PF_1-PF_2)}^{2}}={{(2aecos\theta )}^{2}} $ $ =4a^{2}e^{2}{{\cos }^{2}}\theta =4a^{2}( 1-\frac{b^{2}}{d^{2}} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें