Conic-Sections Question 555

Question: Through the vertex O at a parabola $ y^{2}=4x, $ chords OP and OQ are drawn at right angles to one another. The locus of the middle point of PQ is

Options:

A) $ y^{2}=2x+8 $

B) $ y^{2}=x+8 $

C) $ y^{2}=2x-8 $

D) $ y^{2}=x-8 $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Given parabola is $ y^{2}=4x $ ? (1) Let $ P\equiv ( t^2_1,2t_1 ) $ and $ Q\equiv ( t^2_2,2t_2 ) $ Slope of $ OP=\frac{2t_1}{t^2_1}=\frac{2}{t_1} $ and slope of $ OQ=\frac{2}{t_2} $ Since $ OP\bot OQ, $
$ \therefore \frac{4}{t_1t_2}=-1 $ or $ t_1t_2=-4 $ ? (2) Let $ R(h,k) $ be the middle point of PQ, then $ h=\frac{t_1^{2}+t_2^{2}}{2} $ ? (3) and $ k=t_1+t_2 $ ? (4) From (4), $ k^{2}=t^2_1+t^2_2+2t_1t_2=2h-8 $ [From (2) and (3)] Hence locus of $ R(h,k) $ is $ y^{2}-2x-8. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें