Conic Sections Question 56

Question: If $ x=9 $ is the chord of contact of the hyperbola $ x^{2}-y^{2}=9 $ , then the equation of the corresponding pair of tangents is

[IIT 1999]

Options:

A) $ 9x^{2}-8y^{2}+18x-9=0 $

B) $ 9x^{2}-8y^{2}-18x+9=0 $

C) $ 9x^{2}-8y^{2}-18x-9=0 $

D) $ 9x^{2}-8y^{2}+18x+9=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

The equation of chord of contact at point $ (h,k) $ is $ xh-yk=9 $

Comparing with $ x=9, $ we have $ h=1,k=0 $

Hence equation of pair of tangent at point (1,0) is $ SS_1=T^{2} $

therefore $ (x^{2}-y^{2}-9)(1^{2}-0^{2}-9)={{(x-9)}^{2}} $

therefore $ -8x^{2}+8y^{2}+72=x^{2}-18x+81 $

therefore $ 9x^{2}-8y^{2}-18x+9=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें