Conic-Sections Question 562
Question: Consider a circle of radius R. what is the length of a chord which subtends an angle $ \theta $ at the centre?
Options:
A) $ 2R\sin ( \frac{\theta }{2} ) $
B) $ 2R\sin \theta $
C) $ 2R\tan ( \frac{\theta }{2} ) $
D) $ 2R\tan \theta $
Show Answer
Answer:
Correct Answer: A
Solution:
[a] Let there be a circle of radius R and AB a chord.  $ OD\bot AB $  and  $ AD=DB. $  And  $ AD=2AD $   $ \angle AOB=\theta  $
$ \Rightarrow \angle AOD=\frac{\theta }{2} $  In  $ \Delta AOD, $   $ \sin \frac{\theta }{2}=\frac{AD}{OA} $   $ \sin \frac{\theta }{2}=\frac{AD}{R} $   $ AD=R\sin \frac{\theta }{2} $
$ \therefore  $  Length of chord  $ AB=2AD=2R\sin \frac{\theta }{2}. $
 BETA
  BETA 
             
             
           
           
           
          