Conic-Sections Question 562

Question: Consider a circle of radius R. what is the length of a chord which subtends an angle $ \theta $ at the centre?

Options:

A) $ 2R\sin ( \frac{\theta }{2} ) $

B) $ 2R\sin \theta $

C) $ 2R\tan ( \frac{\theta }{2} ) $

D) $ 2R\tan \theta $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let there be a circle of radius R and AB a chord. $ OD\bot AB $ and $ AD=DB. $ And $ AD=2AD $ $ \angle AOB=\theta $
$ \Rightarrow \angle AOD=\frac{\theta }{2} $ In $ \Delta AOD, $ $ \sin \frac{\theta }{2}=\frac{AD}{OA} $ $ \sin \frac{\theta }{2}=\frac{AD}{R} $ $ AD=R\sin \frac{\theta }{2} $
$ \therefore $ Length of chord $ AB=2AD=2R\sin \frac{\theta }{2}. $