Conic-Sections Question 562

Question: Consider a circle of radius R. what is the length of a chord which subtends an angle $ \theta $ at the centre?

Options:

A) $ 2R\sin ( \frac{\theta }{2} ) $

B) $ 2R\sin \theta $

C) $ 2R\tan ( \frac{\theta }{2} ) $

D) $ 2R\tan \theta $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let there be a circle of radius R and AB a chord. $ OD\bot AB $ and $ AD=DB. $ And $ AD=2AD $ $ \angle AOB=\theta $
$ \Rightarrow \angle AOD=\frac{\theta }{2} $ In $ \Delta AOD, $ $ \sin \frac{\theta }{2}=\frac{AD}{OA} $ $ \sin \frac{\theta }{2}=\frac{AD}{R} $ $ AD=R\sin \frac{\theta }{2} $
$ \therefore $ Length of chord $ AB=2AD=2R\sin \frac{\theta }{2}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें